GEODETIC LINEAR ESTIMATION THEORY – GED507

Instructor: Professor Dr. Haluk ÖZENER

Concepts of Observation and the Model
- Observations
- The Mathematical Model

Statistical Concepts
- Probability, Distribution and Density Functions
- Multidimensional Distributions, Marginal and Conditional Distributions, Independence
- Expectations, Moments, and Correlation
- Some often used Distributions
- Multinormal Distribution
- Sampling, Estimation, and Confidence Measures
- Statistical Tests

Error Properties
- Random Errors
- Precision, Accuracy, Cofactors, and Weights
- Blunders
- Systematic Effects (Errors)

Principle and Techniques of Propagation
- Propagation of Distributions
- Propagation of Means
- Propagation of Variances and Covariance
- Propagation of Systematic and “True” Errors

Introduction to Least Squares Adjustment
- The Least Square Principle
- The Techniques of Least Squares
- Linear an Nonlinear Functions in the Model

Adjustment with Conditions Only
- General Case
 - Derivations
 - Adjustment with Maximum Number of Independent Parameters
 - Geometric Interpretation of the Least Square Principle
- Special Cases
 - Adjustment of Observations Only
 - Adjustment of Indirect Observations

Examples and General Discussion on Adjustment with Conditions Only
- Coordinate Transformations
Least Squares Adjustment with Conditions and Constraints
 ➢ General Case for Adjustment with Conditions and Constraints
 ➢ Special Cases
 ➢ Constraints with Added Parameters

Adjustment with Derived Observations and Adjustment in Steps
 ➢ Adjustment with Derived Observations
 ➢ Adjustment in Steps

Numerical and Statistical Consideration in Adjustment
 ➢ Nonlinearity of the Equations
 ➢ Approximate Values for Model Variables
 ➢ A posteriori Estimate of the Reference Variance
 ➢ Iteration Termination with Linearized Conditions
 ➢ A Posteriori Statistical Analysis
 ➢ Computational and Numerical Considerations

Problems